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Motivation

« SLAM is essential for position tracking and scene reconstruction

» Photorealistic reconstruction in real-time is a desired feature for many
applications

« How do we enable real-time photorealistic SLAM?

Our Contributions:

» We show for the first time that a SLAM framework utilizing a 3D Gaussian
map and integrating inertial measurements and depth with unposed RGB
Images enables (1) superior rendering quality, (2) superior tracking, and (3)
scale awareness.

« We release a multi-modal dataset consisting of various scenes collected
using a mobile robot equipped with these sensing modalities
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Overview of the MM3DGS SLAM Framework

MM3DGS Framework
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Gaussian Initialization

| Add new Gaussian per pixel of
keyframe if:

1. Opacity <0.5
2. Depth error > 50x median
depth error
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A Scene From Our UT-MM Dataset (RGB-D+LIDAR+IMU+GT)
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Qualitative Results — Rendering

We present our results on 4
scenes from our dataset:

Square: Robot moves along a
trajectory outlining a square loop

Ego-centric: Robot moves around
objects of interest while keeping them
in the center of the view

Ego-drive: Robot moves around
objects of interest without keeping
them in the center of the view

Straight: Robot moves roughly along
a straight path

Ours SplaTAM  GT

Qurs SplaTAM  GT

| go-drive Fast-straight 5



@ TEXAS

The University of Texas at Austin

RGB (GT) _ RGB (Ours)

Depth (GT) Depth (Ours)
Online map generation

» Our framework integrates RGB-D+IMU with keyframing
along with a depth loss based on the Pearson correlation
coefficient and can render at 90fps

» We achieve 3x better tracking and 5% increase in
rendering quality compared to the state-of-the-art baseline
(SplaTAM)
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Qualitative Results — Tracking

* Depth measurements help correct drift in
the vertical direction (z)

* IMU measurements help correct drift in the
longitudinal and lateral directions (x and y)

* IMU and depth measurements together
help address drift related errors in all
directions

RGB

RGB-D

RGB-D+IMU
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Quantitative Results

« SplaTAM uses RGB-D data (does not integrate IMU) without keyframing
and an L1 loss for depth

« Our framework integrates RGB-D+IMU with keyframing and depth loss is
based on the Pearson correlation coefficient

« We achieve 3x better tracking and 5% increase in rendering quality

TABLE I: Multi-modal SLAM results on the UT-MM dataset: ATE RMSE | is in cm and PSNR 1 is in dB, with SplaTAM
1s used as a baseline. Best results are in bold. Both depth and inertial measurements benefit tracking and image quality.

Method Avg Square-1 Ego-centric-1 Ego-drive Fast-straight
ATE PSNR ATE PSNR ATE  PSNR ATE PSNR ATE  PSNR
SplaTAM (RGB-D) 1206 2203 3286 18.67 440 2278 4.20 20.61 6.78 26.07

Ours (RGB) 39.14 1973 5948 1654 409 23151 67.20 1751 2578 21.71
Ours (RGB+IMU) 3323 1958 4426 17.01 3.41 22.96 6850  17.12 1678  21.24
Ours (RGB-D) 8.75 2220 2038 16.55 6.86 22.24 4.25 23.58 3.52 26.42

Ours (RGB-D+IMU) 3.98 23.30 7.11 18.59 1.15 2495 4.54 23.601 3.13 26.05
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Conclusion

Our Contributions:

* We develop MM3DGS: the first SLAM framework utilizing a 3D Gaussian
map and integrating inertial measurements and depth with unposed RGB
images

* We achieve 3x superior tracking and 5% increase in rendering quality along
with enhanced scale awareness

» We release a multi-modal dataset collected using a mobile robot equipped
with these sensing modalities where we showcase these results
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